Copied to
clipboard

G = C32×C4○D8order 288 = 25·32

Direct product of C32 and C4○D8

direct product, metabelian, nilpotent (class 3), monomial

Aliases: C32×C4○D8, C8.6C62, D4.2C62, C62.76D4, Q8.5C62, (C2×C24)⋊9C6, (C3×D8)⋊7C6, D83(C3×C6), (C6×C24)⋊14C2, (C3×Q16)⋊7C6, Q163(C3×C6), C6.94(C6×D4), C24.31(C2×C6), SD163(C3×C6), (C3×SD16)⋊7C6, C12.92(C3×D4), C4.4(C2×C62), (C3×C12).187D4, (C32×D8)⋊11C2, (C2×C4).28C62, C4.20(D4×C32), C12.58(C22×C6), (C3×C24).74C22, (C32×Q16)⋊11C2, C22.1(D4×C32), (C6×C12).377C22, (C3×C12).188C23, (C32×SD16)⋊11C2, (D4×C32).33C22, (Q8×C32).36C22, (C2×C8)⋊4(C3×C6), C2.14(D4×C3×C6), C4○D43(C3×C6), (C3×C4○D4)⋊10C6, (C2×C6).15(C3×D4), (C3×D4).17(C2×C6), (C3×C6).311(C2×D4), (C3×Q8).30(C2×C6), (C2×C12).164(C2×C6), (C32×C4○D4)⋊11C2, SmallGroup(288,832)

Series: Derived Chief Lower central Upper central

C1C4 — C32×C4○D8
C1C2C4C12C3×C12D4×C32C32×D8 — C32×C4○D8
C1C2C4 — C32×C4○D8
C1C3×C12C6×C12 — C32×C4○D8

Generators and relations for C32×C4○D8
 G = < a,b,c,d,e | a3=b3=c4=e2=1, d4=c2, ab=ba, ac=ca, ad=da, ae=ea, bc=cb, bd=db, be=eb, cd=dc, ce=ec, ede=c2d3 >

Subgroups: 276 in 186 conjugacy classes, 120 normal (24 characteristic)
C1, C2, C2, C3, C4, C4, C22, C22, C6, C6, C8, C2×C4, C2×C4, D4, D4, Q8, C32, C12, C12, C2×C6, C2×C6, C2×C8, D8, SD16, Q16, C4○D4, C3×C6, C3×C6, C24, C2×C12, C2×C12, C3×D4, C3×D4, C3×Q8, C4○D8, C3×C12, C3×C12, C62, C62, C2×C24, C3×D8, C3×SD16, C3×Q16, C3×C4○D4, C3×C24, C6×C12, C6×C12, D4×C32, D4×C32, Q8×C32, C3×C4○D8, C6×C24, C32×D8, C32×SD16, C32×Q16, C32×C4○D4, C32×C4○D8
Quotients: C1, C2, C3, C22, C6, D4, C23, C32, C2×C6, C2×D4, C3×C6, C3×D4, C22×C6, C4○D8, C62, C6×D4, D4×C32, C2×C62, C3×C4○D8, D4×C3×C6, C32×C4○D8

Smallest permutation representation of C32×C4○D8
On 144 points
Generators in S144
(1 26 18)(2 27 19)(3 28 20)(4 29 21)(5 30 22)(6 31 23)(7 32 24)(8 25 17)(9 33 134)(10 34 135)(11 35 136)(12 36 129)(13 37 130)(14 38 131)(15 39 132)(16 40 133)(41 94 49)(42 95 50)(43 96 51)(44 89 52)(45 90 53)(46 91 54)(47 92 55)(48 93 56)(57 78 65)(58 79 66)(59 80 67)(60 73 68)(61 74 69)(62 75 70)(63 76 71)(64 77 72)(81 125 117)(82 126 118)(83 127 119)(84 128 120)(85 121 113)(86 122 114)(87 123 115)(88 124 116)(97 141 105)(98 142 106)(99 143 107)(100 144 108)(101 137 109)(102 138 110)(103 139 111)(104 140 112)
(1 83 46)(2 84 47)(3 85 48)(4 86 41)(5 87 42)(6 88 43)(7 81 44)(8 82 45)(9 142 74)(10 143 75)(11 144 76)(12 137 77)(13 138 78)(14 139 79)(15 140 80)(16 141 73)(17 118 53)(18 119 54)(19 120 55)(20 113 56)(21 114 49)(22 115 50)(23 116 51)(24 117 52)(25 126 90)(26 127 91)(27 128 92)(28 121 93)(29 122 94)(30 123 95)(31 124 96)(32 125 89)(33 106 69)(34 107 70)(35 108 71)(36 109 72)(37 110 65)(38 111 66)(39 112 67)(40 105 68)(57 130 102)(58 131 103)(59 132 104)(60 133 97)(61 134 98)(62 135 99)(63 136 100)(64 129 101)
(1 58 5 62)(2 59 6 63)(3 60 7 64)(4 61 8 57)(9 126 13 122)(10 127 14 123)(11 128 15 124)(12 121 16 125)(17 65 21 69)(18 66 22 70)(19 67 23 71)(20 68 24 72)(25 78 29 74)(26 79 30 75)(27 80 31 76)(28 73 32 77)(33 118 37 114)(34 119 38 115)(35 120 39 116)(36 113 40 117)(41 98 45 102)(42 99 46 103)(43 100 47 104)(44 101 48 97)(49 106 53 110)(50 107 54 111)(51 108 55 112)(52 109 56 105)(81 129 85 133)(82 130 86 134)(83 131 87 135)(84 132 88 136)(89 137 93 141)(90 138 94 142)(91 139 95 143)(92 140 96 144)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88)(89 90 91 92 93 94 95 96)(97 98 99 100 101 102 103 104)(105 106 107 108 109 110 111 112)(113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128)(129 130 131 132 133 134 135 136)(137 138 139 140 141 142 143 144)
(1 8)(2 7)(3 6)(4 5)(9 10)(11 16)(12 15)(13 14)(17 18)(19 24)(20 23)(21 22)(25 26)(27 32)(28 31)(29 30)(33 34)(35 40)(36 39)(37 38)(41 42)(43 48)(44 47)(45 46)(49 50)(51 56)(52 55)(53 54)(57 58)(59 64)(60 63)(61 62)(65 66)(67 72)(68 71)(69 70)(73 76)(74 75)(77 80)(78 79)(81 84)(82 83)(85 88)(86 87)(89 92)(90 91)(93 96)(94 95)(97 100)(98 99)(101 104)(102 103)(105 108)(106 107)(109 112)(110 111)(113 116)(114 115)(117 120)(118 119)(121 124)(122 123)(125 128)(126 127)(129 132)(130 131)(133 136)(134 135)(137 140)(138 139)(141 144)(142 143)

G:=sub<Sym(144)| (1,26,18)(2,27,19)(3,28,20)(4,29,21)(5,30,22)(6,31,23)(7,32,24)(8,25,17)(9,33,134)(10,34,135)(11,35,136)(12,36,129)(13,37,130)(14,38,131)(15,39,132)(16,40,133)(41,94,49)(42,95,50)(43,96,51)(44,89,52)(45,90,53)(46,91,54)(47,92,55)(48,93,56)(57,78,65)(58,79,66)(59,80,67)(60,73,68)(61,74,69)(62,75,70)(63,76,71)(64,77,72)(81,125,117)(82,126,118)(83,127,119)(84,128,120)(85,121,113)(86,122,114)(87,123,115)(88,124,116)(97,141,105)(98,142,106)(99,143,107)(100,144,108)(101,137,109)(102,138,110)(103,139,111)(104,140,112), (1,83,46)(2,84,47)(3,85,48)(4,86,41)(5,87,42)(6,88,43)(7,81,44)(8,82,45)(9,142,74)(10,143,75)(11,144,76)(12,137,77)(13,138,78)(14,139,79)(15,140,80)(16,141,73)(17,118,53)(18,119,54)(19,120,55)(20,113,56)(21,114,49)(22,115,50)(23,116,51)(24,117,52)(25,126,90)(26,127,91)(27,128,92)(28,121,93)(29,122,94)(30,123,95)(31,124,96)(32,125,89)(33,106,69)(34,107,70)(35,108,71)(36,109,72)(37,110,65)(38,111,66)(39,112,67)(40,105,68)(57,130,102)(58,131,103)(59,132,104)(60,133,97)(61,134,98)(62,135,99)(63,136,100)(64,129,101), (1,58,5,62)(2,59,6,63)(3,60,7,64)(4,61,8,57)(9,126,13,122)(10,127,14,123)(11,128,15,124)(12,121,16,125)(17,65,21,69)(18,66,22,70)(19,67,23,71)(20,68,24,72)(25,78,29,74)(26,79,30,75)(27,80,31,76)(28,73,32,77)(33,118,37,114)(34,119,38,115)(35,120,39,116)(36,113,40,117)(41,98,45,102)(42,99,46,103)(43,100,47,104)(44,101,48,97)(49,106,53,110)(50,107,54,111)(51,108,55,112)(52,109,56,105)(81,129,85,133)(82,130,86,134)(83,131,87,135)(84,132,88,136)(89,137,93,141)(90,138,94,142)(91,139,95,143)(92,140,96,144), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128)(129,130,131,132,133,134,135,136)(137,138,139,140,141,142,143,144), (1,8)(2,7)(3,6)(4,5)(9,10)(11,16)(12,15)(13,14)(17,18)(19,24)(20,23)(21,22)(25,26)(27,32)(28,31)(29,30)(33,34)(35,40)(36,39)(37,38)(41,42)(43,48)(44,47)(45,46)(49,50)(51,56)(52,55)(53,54)(57,58)(59,64)(60,63)(61,62)(65,66)(67,72)(68,71)(69,70)(73,76)(74,75)(77,80)(78,79)(81,84)(82,83)(85,88)(86,87)(89,92)(90,91)(93,96)(94,95)(97,100)(98,99)(101,104)(102,103)(105,108)(106,107)(109,112)(110,111)(113,116)(114,115)(117,120)(118,119)(121,124)(122,123)(125,128)(126,127)(129,132)(130,131)(133,136)(134,135)(137,140)(138,139)(141,144)(142,143)>;

G:=Group( (1,26,18)(2,27,19)(3,28,20)(4,29,21)(5,30,22)(6,31,23)(7,32,24)(8,25,17)(9,33,134)(10,34,135)(11,35,136)(12,36,129)(13,37,130)(14,38,131)(15,39,132)(16,40,133)(41,94,49)(42,95,50)(43,96,51)(44,89,52)(45,90,53)(46,91,54)(47,92,55)(48,93,56)(57,78,65)(58,79,66)(59,80,67)(60,73,68)(61,74,69)(62,75,70)(63,76,71)(64,77,72)(81,125,117)(82,126,118)(83,127,119)(84,128,120)(85,121,113)(86,122,114)(87,123,115)(88,124,116)(97,141,105)(98,142,106)(99,143,107)(100,144,108)(101,137,109)(102,138,110)(103,139,111)(104,140,112), (1,83,46)(2,84,47)(3,85,48)(4,86,41)(5,87,42)(6,88,43)(7,81,44)(8,82,45)(9,142,74)(10,143,75)(11,144,76)(12,137,77)(13,138,78)(14,139,79)(15,140,80)(16,141,73)(17,118,53)(18,119,54)(19,120,55)(20,113,56)(21,114,49)(22,115,50)(23,116,51)(24,117,52)(25,126,90)(26,127,91)(27,128,92)(28,121,93)(29,122,94)(30,123,95)(31,124,96)(32,125,89)(33,106,69)(34,107,70)(35,108,71)(36,109,72)(37,110,65)(38,111,66)(39,112,67)(40,105,68)(57,130,102)(58,131,103)(59,132,104)(60,133,97)(61,134,98)(62,135,99)(63,136,100)(64,129,101), (1,58,5,62)(2,59,6,63)(3,60,7,64)(4,61,8,57)(9,126,13,122)(10,127,14,123)(11,128,15,124)(12,121,16,125)(17,65,21,69)(18,66,22,70)(19,67,23,71)(20,68,24,72)(25,78,29,74)(26,79,30,75)(27,80,31,76)(28,73,32,77)(33,118,37,114)(34,119,38,115)(35,120,39,116)(36,113,40,117)(41,98,45,102)(42,99,46,103)(43,100,47,104)(44,101,48,97)(49,106,53,110)(50,107,54,111)(51,108,55,112)(52,109,56,105)(81,129,85,133)(82,130,86,134)(83,131,87,135)(84,132,88,136)(89,137,93,141)(90,138,94,142)(91,139,95,143)(92,140,96,144), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128)(129,130,131,132,133,134,135,136)(137,138,139,140,141,142,143,144), (1,8)(2,7)(3,6)(4,5)(9,10)(11,16)(12,15)(13,14)(17,18)(19,24)(20,23)(21,22)(25,26)(27,32)(28,31)(29,30)(33,34)(35,40)(36,39)(37,38)(41,42)(43,48)(44,47)(45,46)(49,50)(51,56)(52,55)(53,54)(57,58)(59,64)(60,63)(61,62)(65,66)(67,72)(68,71)(69,70)(73,76)(74,75)(77,80)(78,79)(81,84)(82,83)(85,88)(86,87)(89,92)(90,91)(93,96)(94,95)(97,100)(98,99)(101,104)(102,103)(105,108)(106,107)(109,112)(110,111)(113,116)(114,115)(117,120)(118,119)(121,124)(122,123)(125,128)(126,127)(129,132)(130,131)(133,136)(134,135)(137,140)(138,139)(141,144)(142,143) );

G=PermutationGroup([[(1,26,18),(2,27,19),(3,28,20),(4,29,21),(5,30,22),(6,31,23),(7,32,24),(8,25,17),(9,33,134),(10,34,135),(11,35,136),(12,36,129),(13,37,130),(14,38,131),(15,39,132),(16,40,133),(41,94,49),(42,95,50),(43,96,51),(44,89,52),(45,90,53),(46,91,54),(47,92,55),(48,93,56),(57,78,65),(58,79,66),(59,80,67),(60,73,68),(61,74,69),(62,75,70),(63,76,71),(64,77,72),(81,125,117),(82,126,118),(83,127,119),(84,128,120),(85,121,113),(86,122,114),(87,123,115),(88,124,116),(97,141,105),(98,142,106),(99,143,107),(100,144,108),(101,137,109),(102,138,110),(103,139,111),(104,140,112)], [(1,83,46),(2,84,47),(3,85,48),(4,86,41),(5,87,42),(6,88,43),(7,81,44),(8,82,45),(9,142,74),(10,143,75),(11,144,76),(12,137,77),(13,138,78),(14,139,79),(15,140,80),(16,141,73),(17,118,53),(18,119,54),(19,120,55),(20,113,56),(21,114,49),(22,115,50),(23,116,51),(24,117,52),(25,126,90),(26,127,91),(27,128,92),(28,121,93),(29,122,94),(30,123,95),(31,124,96),(32,125,89),(33,106,69),(34,107,70),(35,108,71),(36,109,72),(37,110,65),(38,111,66),(39,112,67),(40,105,68),(57,130,102),(58,131,103),(59,132,104),(60,133,97),(61,134,98),(62,135,99),(63,136,100),(64,129,101)], [(1,58,5,62),(2,59,6,63),(3,60,7,64),(4,61,8,57),(9,126,13,122),(10,127,14,123),(11,128,15,124),(12,121,16,125),(17,65,21,69),(18,66,22,70),(19,67,23,71),(20,68,24,72),(25,78,29,74),(26,79,30,75),(27,80,31,76),(28,73,32,77),(33,118,37,114),(34,119,38,115),(35,120,39,116),(36,113,40,117),(41,98,45,102),(42,99,46,103),(43,100,47,104),(44,101,48,97),(49,106,53,110),(50,107,54,111),(51,108,55,112),(52,109,56,105),(81,129,85,133),(82,130,86,134),(83,131,87,135),(84,132,88,136),(89,137,93,141),(90,138,94,142),(91,139,95,143),(92,140,96,144)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88),(89,90,91,92,93,94,95,96),(97,98,99,100,101,102,103,104),(105,106,107,108,109,110,111,112),(113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128),(129,130,131,132,133,134,135,136),(137,138,139,140,141,142,143,144)], [(1,8),(2,7),(3,6),(4,5),(9,10),(11,16),(12,15),(13,14),(17,18),(19,24),(20,23),(21,22),(25,26),(27,32),(28,31),(29,30),(33,34),(35,40),(36,39),(37,38),(41,42),(43,48),(44,47),(45,46),(49,50),(51,56),(52,55),(53,54),(57,58),(59,64),(60,63),(61,62),(65,66),(67,72),(68,71),(69,70),(73,76),(74,75),(77,80),(78,79),(81,84),(82,83),(85,88),(86,87),(89,92),(90,91),(93,96),(94,95),(97,100),(98,99),(101,104),(102,103),(105,108),(106,107),(109,112),(110,111),(113,116),(114,115),(117,120),(118,119),(121,124),(122,123),(125,128),(126,127),(129,132),(130,131),(133,136),(134,135),(137,140),(138,139),(141,144),(142,143)]])

126 conjugacy classes

class 1 2A2B2C2D3A···3H4A4B4C4D4E6A···6H6I···6P6Q···6AF8A8B8C8D12A···12P12Q···12X12Y···12AN24A···24AF
order122223···3444446···66···66···6888812···1212···1212···1224···24
size112441···1112441···12···24···422221···12···24···42···2

126 irreducible representations

dim111111111111222222
type++++++++
imageC1C2C2C2C2C2C3C6C6C6C6C6D4D4C3×D4C3×D4C4○D8C3×C4○D8
kernelC32×C4○D8C6×C24C32×D8C32×SD16C32×Q16C32×C4○D4C3×C4○D8C2×C24C3×D8C3×SD16C3×Q16C3×C4○D4C3×C12C62C12C2×C6C32C3
# reps111212888168161188432

Matrix representation of C32×C4○D8 in GL3(𝔽73) generated by

6400
080
008
,
800
080
008
,
7200
0460
0046
,
7200
05716
05757
,
100
05716
01616
G:=sub<GL(3,GF(73))| [64,0,0,0,8,0,0,0,8],[8,0,0,0,8,0,0,0,8],[72,0,0,0,46,0,0,0,46],[72,0,0,0,57,57,0,16,57],[1,0,0,0,57,16,0,16,16] >;

C32×C4○D8 in GAP, Magma, Sage, TeX

C_3^2\times C_4\circ D_8
% in TeX

G:=Group("C3^2xC4oD8");
// GroupNames label

G:=SmallGroup(288,832);
// by ID

G=gap.SmallGroup(288,832);
# by ID

G:=PCGroup([7,-2,-2,-2,-3,-3,-2,-2,1037,772,9077,4548,124]);
// Polycyclic

G:=Group<a,b,c,d,e|a^3=b^3=c^4=e^2=1,d^4=c^2,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,b*c=c*b,b*d=d*b,b*e=e*b,c*d=d*c,c*e=e*c,e*d*e=c^2*d^3>;
// generators/relations

׿
×
𝔽